

Journal of Chromatography, 181 (1980) 453-455

Biomedical Applications

© Elsevier Scientific Publishing Company, Amsterdam — Printed in The Netherlands

CHROMBIO. 466

Note

Simplified liquid chromatographic-electrochemical determination of norepinephrine and dopamine in rat brain

GEORGE M. ANDERSON, DAVID K. BATTER, J. GERALD YOUNG, BENNETT A. SHAYWITZ and DONALD J. COHEN

Yale Child Study Center, 333 Cedar Street, New Haven, Conn. 06510 (U.S.A.)

(Received September 26th, 1979)

Recently developed liquid chromatographic-electrochemical (LC-EC) methods [1-5] for the determination of norepinephrine (NE) and/or dopamine (DA) in brain tissue have provided advantages in speed, sensitivity, and cost. However, all of the methods still employ a preliminary purification step. We have found that the compounds can be determined in rat brain by the direct injection of the supernatant obtained after sonication and centrifugation of the tissue.

EXPERIMENTAL

Materials

The LC-EC system consisted of an Altex 110A pump, a Rheodyne 70-10 injection valve, and a stainless steel 500 × 1.0 mm column dry-packed with pellicular Vydac SC cation-exchange resin (Rainin Instrument Co., Brighton, Mass., U.S.A.). A Model LC-4 electrochemical controller was used with a CP-S carbon paste electrode (Bioanalytical Systems, West Lafayette, Ind., U.S.A.). The potential was set at +0.5 V with respect to a Ag/AgCl reference electrode. A citrate-acetate buffer solvent system [2] was delivered at a flow-rate of 1.0 ml/min.

Method

Weighed whole rat brains (1-2 g) were placed in polycarbonate centrifuge tubes containing 4.0 ml of 0.1 M HClO₄ (with 400 µl of 1 M NaHSO₃ per liter). After the addition of 500 ng of dihydroxybenzylamine (DHBA) (5.0 µl of 10.0 mg DHBA per 100 ml of 0.1 M HClO₄), the brain was sonicated at a medium setting for two 30-sec periods using a Branson Polytron sonicator (Branson Sonic Power Co., Danbury, Conn., U.S.A.). After adding 0.5 ml of 3.4 M HClO₄ and vortex mixing, the samples were centrifuged at 10,000 g for 10 min

and a portion of the supernatant stored in a small polyethylene tube. The catecholamines (NE and DA) were determined by injecting 20 μ l of the supernatant into the LC-EC system. The NE and DA peak heights were ratioed to the DHBA peak height, and the concentrations (ng/g brain) calculated knowing the relative response of the standards, the amount of DHBA added, and the brain weight. When determining NE and DA in brain punches and areas [6] weighing 2-10 mg each, the tissue was sonicated in 200 μ l of 0.1 M HClO_4 after the addition of 10 ng of DHBA, and then centrifuged and determined as above.

RESULTS AND DISCUSSION

A chromatogram of catecholamine standards and two different rat brain samples is shown in Fig. 1. Up to 36 samples can be easily analyzed in 8 h. The standards and samples were determined with typical coefficients of variation (C.V.) of less than 5% and with absolute detection limits of ca. 10-20 pg. The internal standard (DHBA) was well recovered [$74.9 \pm 12\%$ (mean \pm S.D.), $n = 110$] from whole brains. Mean recoveries of DHBA from particular brain areas (whole areas and punches) ranged from 84 to 99% with C.V. values of 4-9%. Split samples which were analyzed using both this method and a procedure with an alumina absorption step [2] showed excellent agreement ($r > 0.99$). The low oxidation potential and the cation-exchange resin combined to give sufficient selectivity for injection of the unpurified and unconcentrated sonicate. When compared to a recent reversed-phase LC-EC method [1] a saving in time in the sample preparation and chromatography steps is apparent. We are

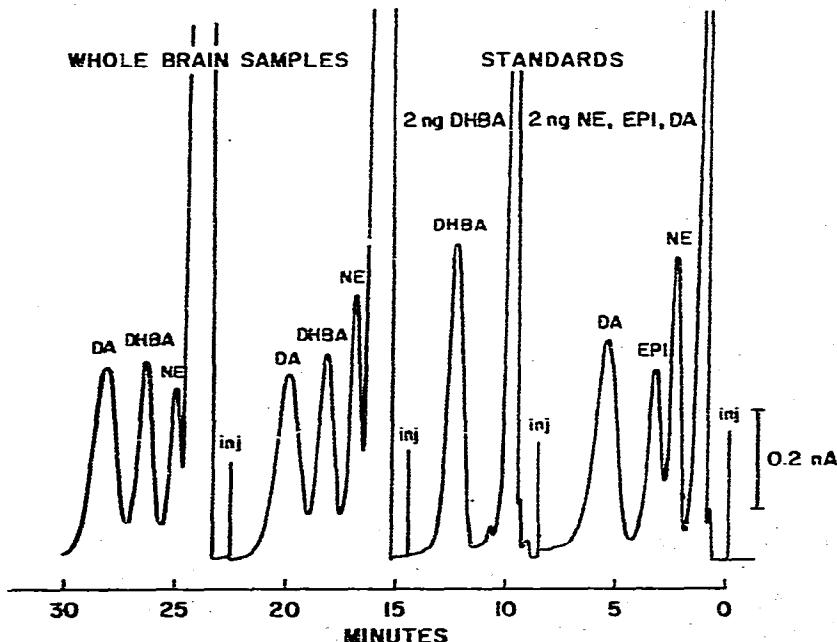


Fig. 1. Chromatogram of catecholamine standards and two different rat brain samples (ca. 1.4 g), all run at 2 nA full scale. Dihydroxybenzylamine (DHBA) was added to the brains as an internal standard (500 ng/brain). DA, dopamine; NE, norepinephrine; EPI, epinephrine.

presently developing methods involving the direct injection of the same supernatant into a reversed-phase LC-EC/fluorimetric system [7] in order to determine a variety of indolic and catechol metabolites.

ACKNOWLEDGEMENTS

We gratefully acknowledge the collaboration of M.E. Kavanagh in these studies. We also thank Cs. Horváth for his encouragement. This research was supported by NIMH Clinical Research Center grant No. P50 MH 30929, NIH grant HD-03008, Children's Clinical Research Center RR00125, the William T. Grant Foundation, Mr. Leonard Berger, and the Solomon R. and Rebecca D. Baker Foundation, Inc.

REFERENCES

- 1 Z.J. Felice, J.D. Felice and P.T. Kissinger, *J. Neurochem.*, 31 (1978) 1461-1465.
- 2 R. Keller, A. Oke, I. Mefford and R.N. Adams, *Life Sci.*, 19 (1976) 995-1004.
- 3 C. Refshauge, P.T. Kissinger, R. Dreiling, L. Blank, R. Freeman and R.N. Adams, *Life Sci.*, 14 (1974) 311-322.
- 4 S. Sasa and C.L. Blank, *Anal. Chem.*, 49 (1977) 354-359.
- 5 H. Hashimoto and Y. Maruyama, *J. Chromatogr.*, 152 (1978) 387-393.
- 6 M. Palkovits, *Brain Res.*, 59 (1973) 449-450.
- 7 G.M. Anderson, J.G. Young and D.J. Cohen, *J. Chromatogr.*, 164 (1979) 501.